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In recent years, metal halide perovskite materials have at-
tracted  wide  attention  in  the  fields  of  photovoltaics  (PVs),
light-emitting diodes (LEDs) and photodetectors (PDs) due to
their  excellent  light  absorption[1−6],  adjustable  bandgaps  and
long  carrier  diffusion  length.  Compared  with  commercial  Si
and  GaN  photodetectors,  perovskite  photodetectors  (PPDs)
present  wider  light  detection  range,  higher  sensitivity  and
higher external quantum efficiency (EQE)[7−9].

PDs  are  divided  into  two  types:  wide-bandgap  detectors
and  narrow-bandgap  detectors,  and  their  functions  corres-
pond  to  different  wavelength  ranges.  The  traditional  detect-
ors  (Si,  GaN,  InAs  PDs)  need  low-temperature  environment
for their operation[10, 11], and it is difficult to perform simultan-
eous  detection  to  short-wavelength  and  long-wavelength
light,  thus  limiting  their  development,  while  the  adjustable
bandgaps  of  perovskites  enable  them  to  sense  photons  of
short-wavelength  and  long-wavelength  at  once  efficiently[12].
Moreover,  perovskites  can  be  made via a  facile  solution-
processing,  making  PPDs  more  favorable  in  fabrication  of
large-area and flexible devices[13−17]. The development and ap-
plication of PPDs are worthy of discussing.

Visible light communication (VLC) is a wireless communica-
tion technology (Fig. 1), which uses visible light (300–900 nm)
as the information carrier to transmit information within a cer-
tain  distance[18−20].  It  has  the  advantages  of  high  response
speed, security, low energy cost and electromagnetic interfer-
ence resistance[21]. Gao et al.[22] reported that CsPbIxBr3–x pho-
todetector  simultaneously  possessed high sensitivity  and fast
response by engineering device and film quality (Fig. 2(a)). CsPb-
IBr2 photodetector  had  a  detectable  limit  of  ~21.5  pW/cm2

and  a  response  time  of  21  ns.  Moreover,  the  photoresponse
characteristics can keep for 2000 h. The photodetector was in-
tegrated  into  the  VLC  system  (Fig.  1),  and  successfully  real-
ized the transmission of text and audio signals.

PPDs  present  specific  responses  to  red,  green  and  blue
light,  which  is  similar  to  the  light-receiving  vertebral  body  of
human retina. Lin et al. [23] used a PPD with a microcavity struc-
ture  to  realize  detection  to  different  colors  without  using
external  filters,  thus  realizing  full-color  image  restoration
(Fig.  2(b)).  The  detection  degree  (D*)  of  the  device  reached
1013 Jones,  the  linear  dynamic  range  (LDR)  was  154  dB,  and
the  response  time  was  580  ns,  which  were  better  than  those
of  human  retina.  Fan et  al.[24] made  hemispherical  FAPbI3

nanowire  arrays  by  using  a  template  method,  which  is  al-

most  impossible  for  traditional  commercial  semiconductors.
And  the  bionic  eye  has  been  successfully  assembled  by  us-
ing  hemispherical  nanowire  detector  arrays  (Fig.  2(c)).  The
density  of  nanowire  detectors  on  bionic  eyes  is  much  higher
than  that  of  photoreceptors  in  human  retina,  so  higher  im-
age resolution can be achieved.

Self-driven  flexible  PDs  have  attracted  interests  because
they  can  be  applied  to  wearable  and  portable  devices[25−28].
The  traditional  planar  photodetector  is  not  satisfactory  in
both  photoelectric  and  mechanical  properties,  and  its  struc-
ture  needs  to  be  improved  to  make  it  more  suitable  for  flex-
ible  devices.  Li et  al.[29] reported  a  Cs0.05(FA0.85MA0.15)0.95-
Pb(I0.85Br0.15)3 PD  with  inverse  opal  structure,  which  can  en-
hance  light  capture  and  improve  carrier  transport.  The  PD
presented a high responsivity of 473 mA/W. What’s more, the
detector  had good mechanical  properties,  and the photocur-
rent  maintained  after  500  bending  tests.  The  flexible  device
can detect sunlight from 5am to 7pm (Fig. 2(d)).

At  present,  the  infrared  PD  technology  becomes  mature.
Owing to  the  limited detection range of  Si  and GaN PDs,  the
development  and  application  of  UV–visible  light  detection  is
required.  Perovskite  fabrication  is  simple,  and  perovskite  has
advantages  in  structure  tuning.  PPDs  will  present  break-
throughs in the near future. 
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Fig. 1. (Color online) Schematic for visible light communication system. At the sending port, LED lamps transfer electrical signals into optical sig-
nals; at the receiving port, PDs convert optical signals into electrical signals, which are then transcoded by digital-to-analog converters.

 

 

Fig. 2. (Color online) (a) CsPbIBr2 photodetector applied to VLC system to transmit files and radio[22], Copyright 2019, Wiley. (b) Optical microcav-
ity regulates the response of  detector in different bands[23],  Copyright 2019,  Wiley.  (c)  Application of  electronic bionic eye[24],  Copyright 2020,
Springer Nature. (d) Flexible devices in the solar detection system[29], Copyright 2020, Wiley.
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